skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lange, Devin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A common research process in visualization is for visualization researchers to collaborate with domain experts to solve particular applied data problems. While there is existing guidance and expertise around how to structure collaborations to strengthen research contributions, there is comparatively little guidance on how to navigate the implications of, and power produced through the socio-technical entanglements of collaborations. In this paper, we qualitatively analyze reflective interviews of past participants of collaborations from multiple perspectives: visualization graduate students, visualization professors, and domain collaborators. We juxtapose the perspectives of these individuals, revealing tensions about the tools that are built and the relationships that are formed — a complex web of competing motivations. Through the lens of matters of care, we interpret this web, concluding with considerations that both trouble and necessitate reformation of current patterns around collaborative work in visualization design studies to promote more equitable, useful, and care-ful outcomes. 
    more » « less
  2. Abstract How do we ensure the veracity of science? The act of manipulating or fabricating scientific data has led to many high‐profile fraud cases and retractions. Detecting manipulated data, however, is a challenging and time‐consuming endeavor. Automated detection methods are limited due to the diversity of data types and manipulation techniques. Furthermore, patterns automatically flagged as suspicious can have reasonable explanations. Instead, we propose a nuanced approach where experts analyze tabular datasets, e.g., as part of the peer‐review process, using a guided, interactive visualization approach. In this paper, we present an analysis of how manipulated datasets are created and the artifacts these techniques generate. Based on these findings, we propose a suite of visualization methods to surface potential irregularities. We have implemented these methods in Ferret, a visualization tool for data forensics work. Ferret makes potential data issues salient and provides guidance on spotting signs of tampering and differentiating them from truthful data. 
    more » « less